
International Journal of Advances in Data and Information Systems 

Vol. 1, No. 1, April 2020, pp. 9-16 

ISSN: 2721-3056, DOI: 10.25008/ijadis.v1i1.13    9 

  

Journal homepage: http://ijadis.org 

Application of K-Means Clustering Algorithm for 

Determination of Fire-Prone Areas Utilizing Hotspots in West 

Kalimantan Province 
 

 

Nabila Amalia Khairani1, Edi Sutoyo2 
1,2Department of Information System, School of Industrial and System Engineering, Telkom University 

 

Article Info  ABSTRACT 

Article history: 

Received Feb 20, 2020 

Revised Mar 13, 2020 

Accepted Mar 26, 2020 

 Forest and land fires are disasters that often occur in Indonesia. In 2007, 
2012 and 2015 forest fires that occurred in Sumatra and Kalimantan attracted 
global attention because they brought smog pollution to neighboring 
countries. One of the regions that has the highest fire hotspots is West 
Kalimantan Province. Forest and land fires have an impact on health, 

especially on the communities around the scene, as well as on the economic 
and social aspects. This must be overcome, one of them is by knowing the 
location of the area of fire and can analyze the causes of forest and land fires. 
With the impact caused by forest and land fires, the purpose of this study is 
to apply the clustering method using the k-means algorithm to be able to 
determine the hotspot prone areas in West Kalimantan Province. And 
evaluate the results of the cluster that has been obtained from the clustering 
method using the k-means algorithm. Data mining is a suitable method to be 
able to find out information on hotspot areas. The data mining method used 

is clustering because this method can process hotspot data into information 
that can inform areas prone to hotspots. This clustering uses k-means 
algorithm which is grouping data based on similar characteristics. The 
hotspots data obtained are grouped into 3 clusters with the results obtained 
for cluster 0 as many as 284 hotspots including hazardous areas, 215 hotspots 
including non-prone areas and 129 points that belong to very vulnerable 
areas. Then the clustering results were evaluated using the Davies-Bouldin 
Index (DBI) method with a value of 3.112 which indicates that the clustering 

results of 3 clusters were not optimal. 
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1. INTRODUCTION 

Indonesia is the country that has the most extensive tropical forests and has the highest 
biodiversity in the world besides Brazil and Colombia. It has 120.6 million hectares or around 63 

percent of the land area which is forest area. Forest fires in Indonesia attracted global attention at 

the time of the fires in 1982/83 and 1997/1998. In 2007, 2012 and 2015 the occurrence of forest 
fires in Indonesia brought cross-border haze pollution to the ASEAN region and this also became 

the center of attention for the global community. 

https://creativecommons.org/licenses/by-sa/4.0/
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Forest fires in Indonesia are already attracting the attention of the global community that 

brings smog pollution across borders of ASEAN. Based on information from the Bureau of 

Meteorology, Climatology and Geophysics in 2018, it was stated that the territory of Indonesia that 
was most vulnerable to forest and land fires was 11 Provinces. One area that faces the threat of a 

forest fire disaster is West Kalimantan Province. The impact of forest fires is very bad for the 

environment around the scene. From the impact caused by the forest and land fires, information is 
needed that can identify areas prone to hotspots. The results of this information can be used as 

prevention in forest fires early on [1]. 

Considering the factors and impacts of forest and land fires, it is necessary to be able to 

know the areas that will be detected in the category of areas that are prone to hotspots, areas that are 
very prone to hotspots and areas that are not prone to hotspots. Detection of forest and land fires is 

detected by satellites using the MODIS sensor on Terra / Aqua satellites and Snpp satellite VIIRS 

which will give an overview of hotspots in the area of forest and land fires [2]. Information from 
the hot spot distribution data can be seen with the highest temperature in each area of forest and 

land fires. Data obtained from the National Aeronautics and Space Institute (LAPAN) will be very 

useful information because the data can be processed using data mining techniques, where data 
mining techniques can process data at a large scale [3]. 

One study of data mining is about clustering. In the clustering algorithm, the data will be 

grouped into clusters based on the similarity of one data to another. The principle of clustering is to 

maximize the similarity between members of one cluster and minimize the similarity between 
members of different clusters [4]. 

In this research, the algorithm that will be used in the clustering method is the K-means 

algorithm which is one of the non-hierarchical clustering methods. The K-means algorithm will 
partition the data into one or more clusters. Data are grouped based on the same characteristics, but 

if the data has different characteristics will be grouped into other clusters / groups [5]. This method 

will determine the hotspot-prone areas in West Kalimantan Province using the k-means clustering 
algorithm. The results of the clustering data will be calculated by the Davies-Bouldin Index (DBI) 

method to see the number of clusters and assess whether the clustering results are optimal or not 

[5]. The Davies-Bouldin Index (DBI) value obtained cannot be negative and the lowest value will 

indicate optimal clustering.The results of this clustering are expected to be able to provide 
information and learning to the community in order to prevent forest and land fires in the province 

of West Kalimantan which includes hotspots, hotspots and hotspots. This study aims to open up the 

people's knowledge in Indonesia that the dangers of the impact of forest and land fires. 
 

2. LITERATURE REVIEW 

2.1. Forest Fires 

In 2015, forest and land fires occurred in Indonesia which threatened Sumatra, Kalimantan 

and Papua. This makes 80% of Sumatra and Kalimantan covered by heavy smoke, and the incident 

also affects neighboring countries. As a result of the catastrophic forest and land fires, an area of 

2.61 million ha of forest and land was burned with huge losses [6]. 
Theoretically forest fires occur due to interactions between fuel, oxygen, and heat under 

certain conditions. If all three elements are present together, the fire will occur. Therefore, to 

overcome this impact, one element was decided by removing fuel or heat [7]. 
 

2.2. Hotspots 

Hotspots are by definition defined as areas that have a relatively higher surface temperature 
compared to the surrounding area. Monitored by remote sensing satellites based on certain 

temperature thresholds. Hotspots are the results of detection of forest or land fires at certain pixel 

sizes. The results of these fires are likely to be detected when the satellite passes under cloud-free 
conditions using certain algorithms. The following below is an illustration of how remote sensing 

satellites monitor forest or land fires in an area [8]. 



   

 

Application of K-Means Clustering Algorithm for Determination of Fire-Prone… (Nabila Amalia Khairani) 

11 

 
Figure 1. Illustration of hotspots 

 
Figure 1 explains how satellites can detect fires at a location. On the left side of the satellite 

can detect a hotspot. The center of the satellite detects two fires within a 500m radius can be 

detected by only one hotspot. The right side of a very large fire can be detected 4 or more hotspots. 

This shows that the host point obtained is not the same as the number of events in forest and land 
fires in the field. 

In determining the class at each point has a confidence interval or confidance level which 

indicates that a hotspot that is monitored via satellite by remote sensing is a true fire event that 
occurs in the field. If the higher the confidence interval produced, the higher the potential for the 

hotspot to state if there is a true forest and land fire. The MODIS Active Fire Product User’s Guide 

divides confidence levels into three classes. The following in Table 1 below is a hotspot trust 

interval [9]. 
 

Table 1. Interval of confidence in hotspot information 

Confidence Class Action 

0% ≤ C < 30% Low Important to note 

30% ≤ C < 80% Normal Warning 

80% ≤ C ≤ 100% High Immediate countermeasure 

 

2.3. Data Mining 

Data mining is the process of being able to determine interesting patterns from large 
amounts of data, data sources in the form of databases, data warehouses, the web, other information 

from repositories or data that is dynamically transmitted to the system [4]. Data mining can dig up 

data into really data that can be used by extracting patterns from processes that cannot be known 
manually or from piles of data that aim to be able to make valuable information. 

Analysis of data mining looks at large and complex amounts of data so that it can be used 

to determine conclusions and get decisions that are worth using. There are several other names of 

data mining, namely: knowledge discovery (mining) in databases (KDD), knowledge extraction 
(data extraction), data / pattern analysis, business intelligence (business intelligence), and others. 

The following in Figure 2 is the process of data mining. 

 
Figure 2. Data Mining Process in Knowledge Discovery in Database [4] 

 

In general, data mining tasks can be divided into two, namely predictive and descriptive. 

Predictive means that data mining is done to form a knowledge model that will be used to make 
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predictions, such as research conducted relating to classification and prediction, forecasting, 

decision modeling, etc [10]–[16]. While descriptive means that data mining is done to look for 

patterns that can be understood by humans that explain the characteristics of the data. Some 
research related to descriptive such as clustering, Mining Frequent Patterns, Associations, 

Correlations, etc [17]–[19]. 
 

2.4. Clustering 

Clustering is a data mining technique that is used to find or group data that has similar 

characters between one data and another. It is an unsupervised data mining method, where this 

method does not require training data and data testing and does not require target output [4]. 
Clustering consists of 2 types, namely Hierarchical and Non-Hierarchical. The difference 

between the two types of clustering is that Hierarchical groups two or more data by looking at the 

object that has the closest resemblance. Furthermore, the process is continued by looking at the 
closeness of the other objects until they are finished, so that the cluster will form a tree 

(hierarchical) level clearly between objects, starting from the most similar to the least similar. 

Clustering for Non-Hierarchical begins by determining the number of clusters as needed. Non-

Hierarchical process is different from Hierarchical process, after the number of clusters is 
determined, the cluster process is directly carried out. This method is called the k-means Clustering 

method. In the picture below, see the difference from clustering in hierarchical and non-hierarchical 

clustering. 
 

2.5. K-Means 

The k-means algorithm is a simple iteration method to partition a given dataset into a 

number of user-defined clusters [20]. K-means is a non-hierarchical clustering method that divides 
data into one or more clusters. Data in one group has the same characteristics but has different 

characteristics from other groups. The k-means method is a distance-based clustering method that 

will divide data into a specified number of clusters, but this algorithm only works on numeric 
attributes. The use of k-means algorithm to do the clustering process basically depends on the 

existing data and the conclusions to be. So, for the use of the k-means algorithm in it make the 

following rules: 

1. The number of clusters must be input. 

2. Can only be done with numeric attribute types. 

The k-means method will partition the data into clusters of data that have the same 
characteristics that will be grouped into one same cluster, then for data that has different 

characteristics will be grouped into other groups. The purpose of data clustering is to minimize 

objective fuction set in the clustering process, which generally seeks to minimize variation within a 

cluster and minimize variation between clusters. Following are the steps of the k-means algorithm 
[21]. 

1. Determine the number of clusters. 

2. Determine the centroid point k (cluster center) randomly. 

3. Calculate the distance of each point to the center of the cluster, the distance between 

one data with one cluster will determine which data goes into which cluster. 

Calculation of the distance between data and cluster center using Euclidian Distance 

with the formula: 

𝐷(𝑖, 𝑗) = √(𝑋1𝑖 − 𝑋1𝑗)
2

+ (𝑋2𝑖 − 𝑋2𝑗)
2
+. . . +(𝑋𝑘𝑖 − 𝑋𝑘𝑗)

2
 

where 

𝐷(𝑖, 𝑗) : Distance of data to i to cluster center j 

𝑋𝑘𝑖 : Data to i in data attribute to k 

𝑋𝑘𝑗 : The center point to j in the data attribute to k 
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3. RESEARCH METHOD 

The data to be used are hotspots data obtained from the National Aeronautics and Space 

Agency (LAPAN). The data that has been obtained is then a process, the process in data processing 
consists of 2 parts, namely the data cleaning process and the data clustering process.  

In this process after obtaining data obtained from the National Aeronautics and Space 

Agency (LAPAN), the data is then cleaned and selected data based on the attributes needed for the 

data clustering process. Furthermore, transformation is performed on the data that has been done in 
the attribute selection process, where the data obtained and from the selected attributes are of type 

data string and to be able to do the clustering process, transformation is required on the attributes of 

the data type type because clustering using the k-means algorithm can only process data of numeric 
data type. Then it goes into the normalization stage, where the goal of the normalization stage is to 

range for each attribute starting from 0-1 to facilitate the clustering process and the numbers used 

are balanced. 

In this process after the data cleaning process, the following stages in the clustering method 
use the k-means algorithm: 

1. Determine the number of clusers 

2. Determine the centroid point (cluster center) randomly. 

3. Calculate the distance at each point to the center of the cluster. 

4. Grouping data based on its cluster. 

5. If the centroid point or center value on the cluster is still changing, a new cluster center 

is determined again by calculating the distance of the point to the center of the cluster. 

6. Furthermore, the iteration results obtained when the center value in the cluster has not 

changed.  

Then the final results obtained from the data clustering process. The process of 

implementing data clustering uses the python programming language. 
In the final process an evaluation of the results of the data clustering process that has been 

obtained is then tested using the Davies-Bouldin Index (DBI) calculation. If the DBI value obtained 

is smaller and not negative, the better the cluster that results from the k-means used. The stages in 
the calculation of DBI are as follows: 

1. Data used are the results of data processed using the euclidean distance formula that has 

been clustered. 

2. Perform average and variance calculations for each cluster, using the formula: 

𝑣𝑎𝑟(𝑥) =
1

𝑁 − 1
 ∑ (𝑥𝑖 − �̅� )2

𝑁

𝑖=1
 

3. Finding the value of Rij and Ri, with the formula: 

 
𝑅𝑖 =  𝑚𝑎𝑥 𝑅𝑖𝑗

                𝑗 = 1, . . 𝑘, 𝑖 ≠ 𝑗
 

4. Calculating the DBI value to find out whether the results from clustering are optimal or 

not, using the formula: 

𝐷𝐵𝐼 =
1

𝑘
 ∑ 𝑅𝑖

𝑘

𝑖=1

 

After the DBI calculation is performed, it displays a visualization of the results from the 

clustering data obtained. Then provide conclusions and suggestions for the clustering process with 

the k-means algorithm. 

 
4. RESULT AND DISCUSSION 

At this stage the K-means algorithm is implemented with the number of clusters which is 3, 

where this process will group data into 3 clusters. The following below are the results of data 
clustering with the K-Means algorithm. 
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4.1. Evaluation of Results 

At this stage the results are evaluated to determine the optimal value in the clustering 

process by using the Davies-Bouldin Index (DBI) method. The results of the evaluation are as 
follows: 

1. Calculate the average variance of data in each cluster, with the results obtained can be seen 

in Table 2 below. 

Table 2. Average results and variance of each cluster 
 Centroid 0 Centoid 1 Centroid 2 

x 0.346 0.381 0.349 

var 0.022 0.021 0.002 

 

2. Calculating the 𝑅𝑖𝑗  value, with the results obtained can be seen in table 3 below: 

Table 3. Results value Rij 

R01 1.250 

R02 8.087 

R12 0.744 

 

3. Calculating the value of 𝑅𝑖 and the value of DBI with the results obtained can be seen in 

Table 4 below: 

Table 4. Results of 𝑅𝑖 values and DBI values 

R1 8.087 

R2 1.250 

DBI 3.112 

 

 The resulting DBI value is greater than 0, so the results of clustering with 3 clusters are not 
optimal. 

 

4.2. Visualization of the Results 

This stage is the stage of data visualization that has been evaluated, the results of which 

will be implemented into a map. The following in Figure 3 is a visualization of the results 

implemented: 

 
Figure 3. Location of clusters by category 



   

 

Application of K-Means Clustering Algorithm for Determination of Fire-Prone… (Nabila Amalia Khairani) 

15 

 

In Figure 3 above you can see the visualization of the results in each cluster  ̧where the red 

color indicates areas that are highly prone to hotspots, yellow areas that are prone to hotspots and 
green areas that are not prone to hotspots. 

In the results of clusters for areas that are not prone to hotspots, there are not many 

scattered areas, for areas that are prone to hotspots, fire points can be seen in several areas and there 

are clustered ones, whereas for areas that are very prone to hotspots, they can be seen in several 
regions but not in groups. From the visualization of the results obtained, areas that are very 

vulnerable to hotspots are more scattered in several areas so that it can make areas that are not 

prone to / vulnerable to hotspots that can cause fires that have a serious impact on the surrounding 
community. This information can be used as a benchmark for the community to be alert to forest 

and land fire disasters in West Kalimantan Province. 

 

5. CONCLUSION 

Based on the results of this study, it can be concluded: 

1. The k-means algorithm clustering method can be used to classify data based on categories, i.e. 

hotspot-prone areas, non-hotspot-prone areas and hotspot-prone areas. In 2019 data from 

January to June, 284 points were included which were in vulnerable areas, 215 points that were 

included in areas that were not vulnerable and 129 points that were classified as very 

vulnerable areas. 

2. In the visualization of results based on clusters obtained for vulnerable areas and areas that are 

not prone to hotspots have the position of points that are close together so that it can cause a 

fire. However, for areas that are very vulnerable to hotspots, the position of points is not only 

in one area, but the position of the points are scattered in various regions. 
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