Recommendation of Prospective Construction Service Providers in Government Procurement Using Decision Tree
DOI:
https://doi.org/10.59395/ijadis.v5i1.1316Keywords:
Eligibility Assessment, Procedurement of Goods/Service, Construction Service Provider, Decision TreeAbstract
The determination of prospective construction service providers using the direct procurement method is the authority of the Goods/ Services Procurement Officer. Administrative requirements are an important factor in selecting prospective construction service providers. The use of the decision tree method in this study is to find out, determine, and analyse the variables that influence the assessment of the feasibility of prospective construction service providers, and get an accuracy value in providing an assessment of the feasibility of prospective construction service providers. The data used in this study are 153 datasets consisting of 13 variables. The existing variables are divided into basic variables and additional variables. The basic variables consist of 5 variables, namely experts, work experience, quality of work, winning tenders and contract value. While the additional variables consist of 8 variables namely business entity status, business entity form, business entity NPWP, business entity domicile, business entity qualification, type of business licence, percentage of work and construction services business licence. By using the decision tree method, the accuracy on the basic variable is 84.84%. The addition of additional variables to the basic variables resulted in an accuracy of 90.91%. This shows that by adding additional variables the accuracy results are higher than using only the basic variables.
Downloads
References
JDIH LKPP, "Jaringan Dokumentasi dan Informasi Hukum Lembaga Kebijakan Pengadaan Barang/Jasa Pemerintah," Pemerintah Republik Indonesia, 2021. https://jdih.lkpp.go.id/regulation/peraturan-lkpp/peraturan-lkpp-nomor-12-tahun-2021
L. K. P. B. J. Pemerintah, "Peraturan Pemerintah Tentang Lembaga Kebijakan Pengadaan Barang/ Jasa Pemerintah," 2021.
muhammad isa Ansori, R. Kusumawati, and m. amin Hariyadi, "View of Prediction of Service Level Agreement Time of Delivery of Goods and Documents at PT Pos Indonesia Using the Random Forest Method," Int. J. Adv. Data Inf. Syst., vol. 4, no. 1, pp. 41-50, 2023, doi: https://doi.org/10.25008/ijadis.v4i2.1281. https://doi.org/10.25008/ijadis.v4i2.1281
Maciej Serda et al., "Synteza i aktywno?? biologiczna nowych analogów tiosemikarbazonowych chelatorów ?elaza," Uniw. ?l?ski, vol. 7, no. 1, pp. 343-354, 2013, doi: 10.2/JQUERY.MIN.JS.
J. Fadlil and wayan firdaus Mahmudy, "Pembuatan Sistem Rekomendasi Menggunakan Decision Tree dan Clustering," kursor, vol. 3, no. 1, pp. 45-66, 2007, Accessed: Feb. 08, 2024. [Online]. Available: www.movielens.org.
R. Darmawan and S. Amini, "Perbandingan Hasil Sentimen Analysis Menggunakan Algoritma Naïve Bayes dan K-Nearest Neighbor pada Twitter," SENAFTI Semin. Nas. Mhs. Fak. Teknol. Inf., no. September, pp. 495-501, 2022.
S. Palaniappan, A. Mustapha, C. Feresa, M. Foozy, and R. Atan, "Customer Profiling using Classification Approach for Bank Telemarketing," Int. J. Informatics Vis., vol. 1, no. 4, pp. 214-217, 2017. https://doi.org/10.30630/joiv.1.4-2.68
T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, "A Systematic Literature Review on Fault Prediction Performance in Software Engineering," IEEE Trans. Softw. Enginering, vol. 38, no. 6, pp. 1276-1304, 2012. https://doi.org/10.1109/TSE.2011.103
A. Florio, "2021 Last-Mile Routing Research Challenge Article XII A Machine Learning Framework for Last-Mile Delivery Optimization," no. September, 2021.
J. W. Quah, C. H. Ang, R. Divakar, R. Idrus, N. L. Abdullah, and X. Y. Chew, Timing-of-delivery prediction model to visualize delivery trends for pos laju malaysia by machine learning techniques, vol. 937. Springer Singapore, 2019. doi: 10.1007/978-981-13-3441-2_7. https://doi.org/10.1007/978-981-13-3441-2_7
R. Kitchin, Cognitive Maps. 2015. doi: 10.1016/B978-0-08-097086-8.72008-3. https://doi.org/10.1016/B978-0-08-097086-8.72008-3
I. Report, PREPARING FOR LIFE IN A DIGITAL WORLD Preparing for Life in a Digital World. 2018. https://doi.org/10.1016/S0262-1762(19)30108-7
J. W. Creswell, Research Design: Qualitative, Quantitative, and Mix Method Approaches, 4th ed. United States of America: SAGE Publication Asia-Pasific Pte. Ltd., 2014.
N. K. Sari, M. T. Budiarto, and R. Ekawati, "Level Kompetensi Digital Mahasiswa Pada Bidang Pemecahan Masalah," SJME (Supremum J. Math. Educ., vol. 7, no. 1, pp. 45-54, 2023, doi: 10.35706/sjme.v7i1.6629. https://doi.org/10.35706/sjme.v7i1.6629
T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman, and A. Y. Wu, "An efficient k-means clustering algorithm: analysis and implementation," IEEE Trans Pattern Anal Mach Intell, vol. 7, no. 7, pp. 881-892, Jul. 2002, doi: 10.1109/tpami.2002.1017616. https://doi.org/10.1109/TPAMI.2002.1017616
M. Yamamoto and H. Hwang, "A general formulation of cluster analysis with dimension reduction and subspace separation," Behaviormetrika, vol. 41, no. 1, pp. 115-129, Jan. 2014, doi: 10.2333/bhmk.41.115. https://doi.org/10.2333/bhmk.41.115
S. Affeldt, L. Labiod, and M. Nadif, "Spectral clustering via ensemble deep autoencoder learning (SC-EDAE)," Pattern Recognit., vol. 108, Dec. 2020, doi: 10.1016/j.patcog.2020.107522. https://doi.org/10.1016/j.patcog.2020.107522
M. Alkhayrat, M. Aljnidi, and K. Aljoumaa, "A comparative dimensionality reduction study in telecom customer segmentation using deep learning and PCA," J. Big Data, vol. 7, no. 1, pp. 1-23, Dec. 2020, doi: 10.1186/S40537-020-0286-0/FIGURES/10. https://doi.org/10.1186/s40537-020-0286-0
N. K. Sari, M. T. Budiarto, and K. M. Rozhana, "Students' Digital Thinking Skills in Solving Mathematics Problems," Proc. 1st Int. Conf. Math. Math. Educ. (ICMMEd 2020), vol. 550, 2021, doi: 10.2991/assehr.k.210508.076. https://doi.org/10.2991/assehr.k.210508.076
I. M. Al-Zuabi, A. Jafar, and K. Aljoumaa, "Predicting customer's gender and age depending on mobile phone data," J Big Data, vol. 6, no. 1, p. 18, Dec. 2019, doi: 10.1186/s40537-019-0180-9. https://doi.org/10.1186/s40537-019-0180-9
M. A. Hariyadi, M. H. Purnomo, M. Hariadi, and K. E. I. Purnama, "Lung segmentation of x-ray thorax image using geometric active contour and analysis of histogram equalization filtering," Int. J. Appl. Math. Stat., vol. 43, no. 13, pp. 327-335, 2013, Accessed: Feb. 20, 2024. [Online]. Available: https://scholar.its.ac.id/en/publications/lung-segmentation-of-x-ray-thorax-image-using-geometric-active-co
J. Buder and F. W. Hesse, "Informational environments: Effects of use, effective designs," Informational Environ. Eff. use, Eff. Des., pp. 1-298, 2017, doi: 10.1007/978-3-319-64274-1. https://doi.org/10.1007/978-3-319-64274-1
J. Antonio, G. Gómez, J. Antonio, and G. Gómez, "Análisis de los procesos de búsqueda , acceso y selección de información digital en futuros maestros An Analysis on Information Digital Searching , Access and Discrimination Processes in Future School Teachers," no. 34, pp. 76-90.
H. Chu, W. Zhang, P. Bai, and Y. Chen, "Data-driven optimization for last-mile delivery," Complex Intell. Syst., no. 0123456789, 2021, doi: 10.1007/s40747-021-00293-1. https://doi.org/10.1007/s40747-021-00293-1
O. H. Romanovskyi, V. M. Grineva, O. A. Zhernovnykova, L. A. Shtefan, and V. V. Fazan, "Formation of digital competence of future mathematics teachers: ascertainment stage," Inf. Technol. Learn. Tools, vol. 65, no. 3, 2018, doi: 10.33407/itlt.v65i3.2412. https://doi.org/10.33407/itlt.v65i3.2412
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Eva Yustina, Mokhamad Amin Hariyadi, Cahyo Crysdian, Thacien Hakizimana

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.