Recommendation System for Selecting Web Programming Learning Materials for Vocational High School Students using Multi-criteria Recommendation Systems
DOI:
https://doi.org/10.59395/ijadis.v5i1.1317Keywords:
Recommendation System, MCRS, Collaborative Filtering, Confusion Matrix, MAEAbstract
In the independent curriculum, the learning that is carried out focuses on developing character, student competence and honing interests, talents. So the amount of learning material given to students does not have to be complete or less. Apart from that, the independent curriculum no longer burdens students with achieving a minimum score because assessments no longer use Minimum Completeness Criteria (KKM) scores. This makes it difficult for teachers to determine whether the material that has been explained can be understood because grades are not a benchmark for a student's success. In fact, if the teacher does not know a student's understanding, the teacher will have difficulty continuing to the next material. Implementation of the Multi-Criteria Recommender System (MCRS) can make it easier for teachers to predict whether students can progress to the next material and recommend which modules are suitable for these students. The recommendation system that will be built is in the form of web-based learning media so that students can be more interested and can help teachers improve learning outcomes. The method used is collaborative filtering by comparing adjusted cosine similarity, cosine based similarity and spearman rank order correlation. Based on the implementation of MCRS using the collaborative filtering method, it shows that the results of the recommendation system have a good impact on the teaching and learning process. Based on the 3 algorithms implemented, the best prediction result is cosine based similarity because the MAE value obtained is the lowest, namely 1.19 and the accuracy value is 76%.
Downloads
References
N. Nurwiatin, "Pengaruh Pengembangan Kurikulum Merdeka Belajar Dan Kesiapan Kepala Sekolah Terhadap Penyesuaian Pembelajaran Di Sekolah," EDUSAINTEK J. Pendidikan, Sains dan Teknol., vol. 9, no. 2, pp. 472-487, 2022. https://doi.org/10.47668/edusaintek.v9i2.537
P. Rahmadhani, D. Widya, and M. Setiawati, "Dampak Transisi Kurikulum 2013 Ke Kurikulum Merdeka Belajar Terhadap Minat Belajar Siswa," JUPEIS J. Pendidik. dan Ilmu Sos., vol. 1, no. 4, pp. 41-49, 2022. https://doi.org/10.57218/jupeis.Vol1.Iss4.321
D. L. Anggraini, M. Yulianti, S. N. Faizah, and N. P. B. Pandiangan, "Peran Guru Dalam Mengembangan Kurikulum Merdeka," J. Ilmu Pendidik. dan Sos., vol. 1, no. 3, pp. 290-298, 2022. https://doi.org/10.58540/jipsi.v1i3.53
R. E. N. Yulian and F. Diantoro, "Manajemen Pengembangan Kompetensi Siswa Sekolah Menengah Kejuruan Berbasis Kemitraan," Edumanagerial, vol. 02, pp. 90-100, 2023.
Harish, A. Gowda, Chirag, Gayathri, and K. M. Gowda, "Multicriteria Recommender System for Life Insurance Plans based on Utility Theory," Int. Res. J. Mod. Eng. Technol. Sci., vol. 4, no. 7, 2022.
E. K. Putri, "Sistem Rekomendasi Pemilihan Buku Menggunakan Algoritma Collaborative Filtering pada Perpustakaan Universitas Muhammadiyah Sukabumi," J. ICT Inf. Commun. Technol., vol. 20, no. 2, pp. 338-343, 2021. https://doi.org/10.36054/jict-ikmi.v20i2.386
A. Y. Pernanda and M. Hakiki, "Penerapan Cosine Similarity Sebagai Metode Pengukuran Similarity Index Pada Sistem Pengajuan Judul Skripsi Stkip Pgri Sumatera Barat," J. Inov. Pendidik. dan Teknol. Inf., vol. 2, no. 2, pp. 93-99, 2021. https://doi.org/10.52060/pti.v2i02.626
M. Yusuf and A. Cherid, "Implementasi Algoritma Cosine Similarity Dan Metode TF-IDF Berbasis PHP Untuk Menghasilkan Rekomendasi Seminar," J. Ilm. Fak. Ilmu Komput., vol. 9, no. 1, pp. 8-16, 2020.
E. Hikmawati, N. U. Maulidevi, and K. Surendro, "Multicriteria Recommender System: A New Model for Determining risk level of COVID-19 in Indonesia," Res. Sq., 2021. https://doi.org/10.21203/rs.3.rs-152475/v1
Eriya, P. G. Kodu, F. Nugrahani, and A. Ghosh, "Recommendation system using hybrid collaborative filtering methods for community searching," J. Phys. Conf. Ser., vol. 1193, no. 1, 2019. https://doi.org/10.1088/1742-6596/1193/1/012021
R. M. Nouh, H. H. Lee, W. J. Lee, and J. D. Lee, "A smart recommender based on hybrid learning methods for personal well-being services," Sensors (Switzerland), vol. 19, no. 2, 2019. https://doi.org/10.3390/s19020431
Z. Fayyaz, M. Ebrahimian, D. Nawara, A. Ibrahim, and R. Kashef, "Recommendation systems: Algorithms, challenges, metrics, and business opportunities," Appl. Sci., vol. 10, no. 21, pp. 1-20, 2020. https://doi.org/10.3390/app10217748
D. A. R. Arrahman, R. Rismala, and A. Romadhony, "Pembangunan Multi-criteria Recommender System dengan Metode Collaborative Filtering dalam Studi Kasus Rekomendasi Produk Kecantikan," e-Procedding Eng., vol. 8, no. 6, pp. 12492-12499, 2021.
Y. M. Arif, D. D. Putra, and N. Khan, "Selecting Tourism Site Using 6 As Tourism Destinations Framework Based Multi-Criteria Recommender System," Appl. Inf. Syst. Manag., vol. 6, no. 1, pp. 7-12, 2023. https://doi.org/10.15408/aism.v6i1.25140
M. Wasid, R. Ali, and S. Shahab, "Adaptive genetic algorithm for user preference discovery in multi-criteria recommender systems," Heliyon, vol. 9, no. 7, p. e18183, 2023. https://doi.org/10.1016/j.heliyon.2023.e18183
R. A. Nadhifah, Y. M. Arif, H. Nurhayati, and L. S. Angreani, "Performance of Multi-Criteria Recommender System Using Cosine-Based Similarity for Selecting Halal Tourism," Appl. Inf. Syst. Manag., vol. 5, no. 2, pp. 111-116, 2022. https://doi.org/10.15408/aism.v5i2.25035
S. M. Al-Ghuribi and S. A. Mohd Noah, "Multi-Criteria Review-Based Recommender System-The State of the Art," IEEE Access, vol. 7, pp. 169446-169468, 2019. https://doi.org/10.1109/ACCESS.2019.2954861
A. N. Khusna, K. P. Delasano, and D. C. E. Saputra, "Penerapan User-Based Collaborative Filtering Algorithm," MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 20, no. 2, pp. 293-304, 2021. https://doi.org/10.30812/matrik.v20i2.1124
H. Hartatik, S. D. Nurhayati, and W. Widayani, "Sistem Rekomendasi Wisata Kuliner di Yogyakarta dengan Metode Item-Based Collaborative Filtering," J. Autom. Comput. Inf. Syst., vol. 1, no. 2, pp. 55-63, 2021. https://doi.org/10.47134/jacis.v1i2.8
C. Ajaegbu, "An optimized item-based collaborative filtering algorithm," J. Ambient Intell. Humaniz. Comput., vol. 12, no. 12, pp. 10629-10636, 2021. https://doi.org/10.1007/s12652-020-02876-1
Y. M Arif., and Nurhayati, H, "Learning Material Selection for Metaverse-Based Mathematics Pedagogy Media Using Multi-Criteria Recommender System", International Journal of Intelligent Engineering and Systems, 15(6), 541-551, 2022. https://doi.org/10.22266/ijies2022.1231.48
Zheng, Y., & Wang, D, "Multi-Criteria Ranking: Next Generation Multi-Criteria Recommendation
Framework". IEEE Access. 2022. doi.org/10.1109/ACCESS.2022.3201821
Siregar, N, "Implementation of Collaborative Filtering Algorithms in Mobile-Based Food Menu Ordering and Recommendation Systems" 7(3), 1162-1170. doi.org/10.30865/mib.v7i3.6387. 2023
R.A. Pratama, R. Hartanto and L.E. Nugroho, "Multi-Point Travel Destination Recommendation System in Yogyakarta Using Hybrid Location Based Service-Floyd Warshall Method1". IEEE Acces. DOI: 10.1109/ISRITI51436.2020.9315458. 2020.
https://doi.org/10.1109/ISRITI51436.2020.9315458
Naufal, M., Bahri, S., Putu, I., Danan Jaya, Y., Dirgantoro, B., Ahmad, A., & Septiawan, R. R, "Implementasi Sistem Rekomendasi Makanan pada Aplikasi EatAja Menggunakan Algoritma Collaborative Filtering". Jurnal Multinetics. (Vol. 7, Issue 2). 2021 https://doi.org/10.32722/multinetics.v7i2.4062
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Lia Wahyuliningtyas, Yunifa Mittachul Arif, Ririen Kusumawati
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.