Comparative Analysis of Cryptocurrency Prediction based on Deep Learning, Decision Tree, Gradient Boosted Tree, Random Tree, and k-NN Model

Authors

  • Sugeng Riyadi Department of Library and Information Science, Airlangga University, Indonesia
  • Faisal Fahmi Department of Library and Information Science, Airlangga University, Indonesia

DOI:

https://doi.org/10.59395/ijadis.v5i2.1338

Keywords:

Bitcoin Machine Learning Prediction Cryptocurrency, Bitcoin, Machine Learning, Prediction, Cryptocurrency

Abstract

Cryptocurrency being a digital or virtual currency that uses cryptography to secure transactions and control the creation of new units. Bitcoin, one of the most popular cryptocurrency, offers various advantages such as security, transparency, and efficiency. The value of Bitcoin can change over time, similar to the regular currencies, and the need to predict the value can be as important as those in the regular. The prediction can be done by multiple algorithms. The purpose of this research is to compare five algorithms in predicting bitcoin value based on Root Mean Squared Error (RMSE) and Squared Error (R2). The five algorithms compared can model the prediction of changes in the bitcoin cryptocurrency, effectively. Based on the experiment, Random Forest outperformed the other algorithms based on its RMSE and R2 result

Downloads

Download data is not yet available.

References

J. K. Chahal, N. Bhatia, G. Singh, V. Gandhi, And P. Kaushal, “Cryptocurrency In Modern Finances,” In 1st International Conference On Applied Data Science And Smart Systems, Adsss 2022, 2023, P. 140001. Doi: https://doi.org/10.1063/5.0177802

A. M. Shantaf, A. S. Mustafa, M. M. Hamdi, M. B. Abdulkareem, A. D. Salman, And Y. H. Sulaiman, “A Review Of Cryptocurrencies: Tether And Ethereum,” In 2nd International Conference On Emerging Technology Trends In Internet Of Things And Computing, Tiotc 2022, 2023, P. 020019. Doi: https://doi.org/10.1063/5.0188274

R. Thinakaran, T. B. Kurniawan, And M. Batumalay, “Algorithmic Trading Strategy Development Using Machine Learning,” J. Eng. Sci. Technol., Vol. 18, No. 6, Pp. 22–31, 2023.

R. Risanti, “Analisis Model Prediksi Cuaca Menggunakan Support Vector Machine, Gradient Boosting, Random Forest, Dan Decision Tree,” 2024, Vol. Xii, Pp. 119–128. Doi: https://doi.org/10.21009/03.1201.Fa18

N. S. Ja’afar, J. Mohamad, And S. Ismail, “Machine Learning For Property Price Prediction And Price Valuation: A Systematic Literature Review,” Plan. Malaysia, Vol. 19, No. 3, Pp. 411–422, Oct. 2021, Doi: https://doi.org/10.21837/Pm.V19i17.1018

D. M. Nanda And P. N. Pudjiantoro, Tacbir Hendro Sabrina, “Metode K-Nearest Neighbor (Knn) Dalam Memprediksi Curah Hujan Di Kota Bandung,” Snestik, Pp. 387–393, 2022, Doi: Https://Doi.Org/10.31284/P.Snestik.2022.2750

E. A. F. Elmuna, T. Chamidy, And F. Nugroho, “Optimization Of The Random Forest Method Using Principal Component Analysis To Predict House Prices,” Int. J. Adv. Data Inf. Syst., Vol. 4, No. 2, Pp. 155–166, Oct. 2023, Doi: https://doi.org/10.25008/Ijadis.V4i2.1290

R. Eliviani And D. D. Wazaumi, “Exploring Sentiment Trends: Deep Learning Analysis Of Social Media Reviews On Google Play Store By Netizens,” Int. J. Adv. Data Inf. Syst., Vol. 5, No. 1, Pp. 62–70, Mar. 2024, Doi: https://doi.org/10.59395/Ijadis.V5i1.1318

E. Yustina, M. A. Hariyadi, And C. Crysdian, “Recommendation Of Prospective Construction Service Providers In Government Procurement Using Decision Tree,” Int. J. Adv. Data Inf. Syst., Vol. 5, No. 1, Pp. 39–48, Mar. 2024, Doi: https://doi.org/10.59395/Ijadis.V5i1.1316

I. Nasios And K. Vogklis, “Blending Gradient Boosted Trees And Neural Networks For Point And Probabilistic Forecasting Of Hierarchical Time Series,” Int. J. Forecast., Vol. 38, No. 4, Pp. 1448–1459, Oct. 2022, Doi: https://doi.org/10.1016/J.Ijforecast.2022.01.001

M. H. Diponegoro, S. S. Kusumawardani, And I. Hidayah, “Tinjauan Pustaka Sistematis?: Implementasi Metode Deep Learning Pada Prediksi Kinerja Murid ( Implementation Of Deep Learning Methods In Predicting Student Performance?: A Systematic Literature Review ),” Vol. 10, No. 2, Pp. 131–138, 2021.

N. G. Ramadhan, Y. Setiya, R. Nur, And F. D. Adhinata, “Pendekatan Deep Learning Untuk Prediksi Durasi Perjalanan Deep Learning Approach For Trip Duration Prediction,” Vol. 11, No. 2, Pp. 85–89, 2022, Doi: https://doi.org/10.34148/Teknika.V11i2.460

J. Gu, C. Sun, And H. Zhao, “Densetnt: End-To-End Trajectory Prediction From Dense Goal Sets,” Proc. Ieee Int. Conf. Comput. Vis., Pp. 15283–15292, 2021, Doi: https://doi.org/10.1109/Iccv48922.2021.01502

L. Syafa’ah And M. Lestandy, “Penerapan Deep Learning Untuk Prediksi Kasus Aktif Covid-19,” J. Sains Komput. Inform., Vol. 5, No. 1, Pp. 453–457, 2021.

S. Sandiwarno, “Penerapan Machine Learning Untuk Prediksi Bencana Banjir,” J. Sist. Inf. Bisnis, Vol. 14, No. 1, Pp. 62–76, 2024, Doi: https://doi.org/10.21456/Vol14iss1pp62-76

D. Noorcahya, A. P. Rifai, A. Darmawan, And W. P. Sari, “Prediction Of Apartment Price Considering Socio Economic And Crime Rates Factors In Dki Jakarta,” Int. J. Adv. Data Inf. Syst., Vol. 4, No. 2, Pp. 145–154, Sep. 2023, Doi: https://doi.org/10.25008/Ijadis.V4i2.1294

T. Chi, J. Li, L. G. Trigeorgis, And A. E. Tsekrekos, “Real Options Theory In International Business,” J. Int. Bus. Stud., Vol. 50, No. 4, Pp. 525–553, Jun. 2019, Doi: https://doi.org/10.1057/S41267-019-00222-Y

M. Vijh, D. Chandola, V. A. Tikkiwal, And A. Kumar, “Sciencedirect Stock Closing Price Prediction Using Machine Learning Techniques,” Procedia Comput. Sci., Vol. 167, No. 2019, Pp. 599–606, 2020, Doi: https://doi.org/10.1016/J.Procs.2020.03.326

[1]P. M. Hasugian and P. B. N. Simangunsong, “Apriori Algorithm Testing Using The RapidMiner Application,” J. Info Sains : Informatika dan Sains, vol. 13, no. 01, pp. 33–40, Mar. 2023, Available: http://ejournal.seaninstitute.or.id/index.php/InfoSains

Sulika, R. Kusumawati, and Y. M. Arif, “Classification of Students' Academic PerformanceUsing Neural Network and C4.5 Model,” Int. J. Adv. Data Inf. Syst., vol. 5, No. 1, Pp. 29-38, Apr. 2024, doi: https://doi.org/10.59395/ijadis.v5i1.1311

A. Safonova, G. Ghazaryan, S. Stiller, M. Main-Knorn, C. Nendel, and M. Ryo, “Ten deep learning techniques to address small data problems with remote sensing,” Int. J. of Applied Earth Observation and Geoinformation, vol. 125, p. 103569, Dec. 2023, doi: https://doi.org/10.1016/j.jag.2023.103569

M. Ridwan, “Penentuan Panjang Optimal Data Deret Waktu Bebas Outlier dengan Menggunakan Metode Window Time,” repository ITS, 2018, Accessed: Jul. 17, 2024. [Online]. Available: https://repository.its.ac.id/

R. S. Aulia and R. M. Atok, “Penentuan Panjang Optimal Data Deret Waktu Bebas Outlier dengan Menggunakan Metode Window Time,” J. Sains dan Seni ITS, vol. 6, no. 1, Mar. 2017, doi: https://doi.org/10.12962/j23373520.v6i1.22520

M. R. Firmansyah, “Forecasting Data Deret Waktu dengan Pendekatan Neural Network,” J. Manajemen, Strategi Bisnis dan Kewirausahaan, 2019, Accessed: Jul. 17, 2024. [Online]. Available: https://ojs.unud.ac.id/index.php/jmbk/VisitorStatistik

M. Kvet and K. Matiaško, “Study on Effective Temporal Data Retrieval Leveraging Complex Indexed Architecture,” Appl. Sci., Nov. 2019, Accessed: Aug. 15, 2024. [Online]. Available: https://www.mdpi.com/2076-3417/11/3/916

Tao Li and Sheng Ma, "Mining temporal patterns without predefined time windows," Fourth IEEE International Conference on Data Mining (ICDM'04), Brighton, UK, 2004, pp. 451-454, doi: https://10.1109/ICDM.2004.10016.

Downloads

Published

2024-11-09

How to Cite

Comparative Analysis of Cryptocurrency Prediction based on Deep Learning, Decision Tree, Gradient Boosted Tree, Random Tree, and k-NN Model. (2024). International Journal of Advances in Data and Information Systems, 5(2), 183-188. https://doi.org/10.59395/ijadis.v5i2.1338

Similar Articles

1-10 of 28

You may also start an advanced similarity search for this article.